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We investigate forces between two charged macroscopic surfaces where the intervening medium is composed of a uni-univalent
electrolyte plus an additional, infinitely long polyelectrolyte chain. The level of the theory is the same as the usual Poisson—
Boltzmann scheme, upgraded by a self-consistent inclusion of the polyelectrolyte configurational statistics into the statistical sum.
The equations obtained are solved analytically in the limit of small polymer charge and small intersurface separation as compared
with the Debye screening length. The interaction free energy as a function of separation between the surfaces behaves in a mark-
edly different way compared to the case of no intervening polyelectrolyte. The surprising feature of the force characteristics is an
additional attractive force derivable even in the mean-field approximation.

1. Introduction

The problem of interaction between charged mac-
roscopic surfaces immersed in an electrolyte solution
has received much attention through years [1] and
has been recently worked out on an accuracy level
equal to the one achieved by the bulk liquid state
theories [2]. The most important recent advance in
the field is the demonstration that the usual mean-
field (Poisson-Boltzmann) theory in certain phys-
ically realistic cases does not predict correctly even
the sign of the interaction, i.e. forces between equally
charged surfaces can become attractive [2,3]. This
effect is due to the fluctuations in the local distri-
bution of ions close to the surfaces and is therefore
completely missed by the mean-field (PB) approach.

If this problem has been well worked out, an up-
graded version of it, where the intervening medium
contains charged polymers as well as charged ions is
only beginning to be scrutinized by an appropriate
theoretical approach [4].

Though the polyelectrolyte theory has a long
standing with many significant results [5], the prob-
lem of confined polyelectrolytes interacting with
charged surfaces is still in its infancy. In this context
we should especially mention the seminal work of
Wiegel [6], who treated the conformational prop-

erties of a polyelectrolyte chain interacting with a
single surface. He showed that by changing the charge
density residing on the surfaces a phase transition
between surface-bound and extended configurations
of the polyelectrolyte chain can be accomplished.
More recently Miklavic and Marcelja [7] have
treated the interaction between charged walls car-
rying grafted polyelectrolytes and immersed in an
electrolyte solution, basing their analysis on the self-
consistent field method devised for neutral polymers
by Milner, Witten and Cates [8]. They analysed the
modifications in the interaction pressure brought
about by the presence of polyelectrolyte chains. A
further step in the understanding of interactions be-
tween charged surfaces with intervening polyelectro-
lyte chains has been accomplished by Akesson,
Woodward and Jonsson, in a combined Monte
Carlo-analytical (Poisson-Boltzmann) approach
[4]. Their model system was composed of two
charged surfaces with oppositely charged polyelec-
trolyte chains in between. They showed that the con-
nectivity of the polyelectrolyte chains can be the cause
of pronounced attractive interactions due to the
bridging of the chains from one surface to the other
one. This is indeed surprising since on the Poisson—
Boltzmann level, without any connectivity between
the charged species — that is to say, the forces be-
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tween equally charged surfaces are always repulsive.

In this contribution we shall go one step further
and treat a model system composed of two charged
surfaces immersed in a uni-univalent electrolyte plus
a single polyelectrolyte chain of infinite extent. Our
method of solving the problem will be very close to
the recently introduced functional-integral approach
to the confined Coulomb fluids [9]. Since we showed
that the Poisson-Boltzmann description of a simple
Coulomb fluid can be obtained from the saddle-point
configuration of an appropriate field theory, we shall
try to proceed likewise in this more complex situa-
tion. We shall derive a coupled set of two equations,
one describing the electrostatic field configuration
and the other one the polymer segment density dis-
tribution, that supersede the single PB equation valid
for the case with no polyelectrolyte present. A lim-
iting case where a simple analytical solution is fea-
sible will be discussed in detail.

2. Theory

Our model system will be composed of a uni—uni-
valent electrolyte of ionic charge e, and dielectric
constant € in equilibrium with a bulk reservoir of ab-
solute activity z,, plus a polyelectrolyte chain of
charge 7 per bead of extension / with a total contour
length N/, both confined between two electrified sur-
faces, separated by 2a and each carrying a surface
charge density g, fig. 1. The surfaces are supposed to
be impenetrable for ions as well as the polyelectro-
lyte. For such a system the configurational part of
the Hamiltonian can be written in a discretized form

3kT
H= Ba 2 (o _rp)2+% Z eeu(r;,r;)
p ]
-3 ;Nkeiu(r, r)+ Y ede(r:) , (1)

where u(r, r')=1/4nee,|$—r’'| is the bare Coulomb
potential between two unit charges located at r and
r', while kT is the thermal energy. In the above equa-
tion index p runs over all the polymer beads. Indices
i and j run over all the polymer beads (e;=1), all an-
ions (e;= —e,) and all cations (e;=e¢,) while index
k can designate the polymer (N,e%=Nt?), the cat-
ions (N.e2=N.e}) or the anions (N.ei=N;é3).
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Fig. 1. The model system. Two charged surfaces (surface charge
density o) at a separation 2g with a uni-univalent electrolyte plus
an infinitely long polyelectrolyte chain (charge per bead 7) in
between. The dielectric constant € is supposed to be the same in
all regions of the space. Surfaces are impenetrable to ions as well
as to the polyelectrolyte. Ions are allowed to exchange with thec
bulk reservoir.

¢.(r) is the external electrostatic potential due to the
charges on the surfaces. In what follows we shall
strictly use a continuum representation of the Gaus-
sian chain that amounts to the following formal
replacement

N 2
; (rp+ 1 _rp)z"’ J (dR;i(nn_)) dn,

where R(n) now stands for the coordinate of the nth
bead along the polymeric chain.

We now construct the partition function for the
system characterized by the configurational Hamil-
tonian H. Since we allow for the exchange of the ions
with the bulk reservoir the appropriate form of the
partition function should be used

fVZ‘: [ exo(—pm) ar(n) 71

" [Rr)

_ )
E=11 X
a Na=0

a

(2)

where Zf=lim,_ ., df; df;...df,, a is the index of
ionic species, a=cations, anions, { is the renormal-
ized value of the absolute activity, (=z,
X exp(4Bedu(r,r')) and B is the inverse thermal
energy, B~ '=kT.

We now proceed in the same way as we did in the
case where no polyelectrolyte is present, that is, we
introduce the Hubbard-Stratonovich transforma-
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tion for all the pair potentials, reducing them to ef-
fective single particle interactions with the auxiliary
field, that is closely linked with the local electrostatic
potential [9]. We shall relegate all the nasty details
of the formal manipulations to a later publication
[10] and quote here only the final results. First of
all the partition function, eq. (2), can be thus trans-
formed into a compact form

E=4(p) exp[BU,(N)]
XJJ (G4,R,R;N)»,d>Rd’R’, (3)

where  4(B)=(2r)"?[det fu—"(r,r' )]'/?* and
U,(N) is the electrostatic self-energy of the poly-
electrolyte chain. G,(R, R’; N) in the above equa-
tion is the conditional probability (Green’s func-
tion) that a polyelectrolyte chain N segments long
will reach point R after starting from point R’ while
moving in an external potential equal to (8t7) ¢(r)
[11]. The ¢ average stands for the following
operation

Oo= [ wexpl=plmiien] 960, (@)

(2]

where Fpg(iey) has already been encountered while
evaluating the grand canonical partition function of
an inhomogeneous electrolyte [9]; it is nothing but
the Poisson-Boltzmann free energy

Fon(e0) =~ heto | [Vo(r) " &

—2kTCj cosh[Beyp(r)] d’r— fﬁ o(r)ad’ (5)

evaluated at imaginary values of the charges. This is
not too strange since in the saddle-point approxi-
mation, which is our next step, all the local poten-
tials are purely imaginary and lead to a PB equation
with a real potential.

We now perform the saddle-point approximation
[12] on the ¢ average in eq. (3). This should lead
us to the PB theory in the case if no polyelectrolyte
is present. We therefore expect that the saddle-point
equations derived from eq. (3) will give us the most
immediate generalization of the PB theory in the
presence of an additional polyelectrolyte chain. These
equations turn out to have the following coupled form
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€€ V>p=2{e, sinh (Beod) — 10, , (6)

3 1—2V2+ﬂ G,(R,R';N)

aN " 6 W@ ) Go(R. K

=3*(R-=R')6(N) , (7)

where the coupling is provided through the ¢ de-
pendence of the polyelectrolyte segment density p;(r)
that can also be written by way of solution of eq. (7)
as [13]
Py(r)

_JJPPRA’R' [§dnG,(R, r; N—n) G4(r,R'; n)
= [{&RdR G,(R, R, N) :

(8)
Also, the saddle-point configuration satisfies the
usual electroneutrality condition in the form

09

tom =0, (9)

where n is the local normal of the bounding surfaces
situated at z=*a. Egs. (6) through (9) represent
the proper generalization of the PB equation in the
presence of a single polyelectrolyte chain. Their so-
lution gives the self-consistent form of the electro-
static potential in the region between the two sur-
faces. In order to avoid confusion we shall refer to
eqgs. (6)-(9) as the single-chain Poisson-Boltzmann
theory for polyelectrolytes (SC-PBP).

The major difference between our work and
the approximation scheme devised by Akesson,
Woodward and Jonsson (PPB approximation) [4],
leaving aside the presence of additional electrolyte,
is in the fact that the statistical average over polye-
lectrolyte configurations is done explicitly in our case,
leading to eqs. (7) and (8), while it is done nu-
merically in their case.

3. An approximate solution of the basic equations

The above set of SC-PBP equations presents two
coupled non-linear differential equations with no
immediate general solution in sight. They belong to
the general class of results derivable through the self-
consistent field method [14] standardly used in the
context of polymer excluded volume interactions.
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The main complication with regard to this case is that
the self-consistent field is not simply a linear func-
tion of p,(r) but is instead given as a solution of eq.
(6).

Instead of turning immediately to numerical ma-
nipulation of the basic equations, we shall first of all
construct an approximate analytical solution valid
under certain restrictive conditions to be explained
in what follows.

Our starting point is the thermodynamic limit
N—-oco, S—oco (in this particular order) with finite
N/S, where S is the surface area of the bounding sur-
faces. This limit invariably leads to the ground-state
dominance ansatz [13] for the polymer Green’s
function G,(R, R’; N) and in addition to the con-
clusion that the system has to be homogeneous in the
transverse (x, y) directions. Furthermore we shall
linearize eq. (6) in ¢, that subsequently leads to an
inhomogeneous Debye-Hiickel equation, with a
source term equal to —tp,(r). Its solution satisfying
the boundary condition, eq. (9), can now be written
down explicitly as

T ’ ’ 7
“"”“%_j 2:(2, 2 ) po(2') dz

_g_cosh(kz)

" egok sinh(ka)’ (10)

where g.(z, z') is an appropriate Green’s function of
the Debye—Hiickel equation and « is the standard in-
verse Debye screening length. However, even this li-
nearization ansatz is not enough to obtain an explicit
polymer Green’s function, i.e. a solution of eq. (7).
This is due to the fact that the first term in the li-
nearized solution, eq. (10), still contains p,. We shall
consequently introduce another approximation, first
-used in a similar context by Wiegel [6], that im-
poses a restriction on the magnitude of 7 of the form
1< gl? and essentially guarantees that the electro-
static interactions between the beads on the poly-
electrolyte chain (the first term in eq. (10)) can be
neglected in comparison with the direct interactions
of the beads with the charges on the surfaces (the
second term in eq. (10)).

Finally we shall also restrict ourselves to the case
of ka< 1, but solely to give the mathematics a more
transparent form. A general solution without this last
restriction is possible but, unfortunately, the ensuing
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mathematical technicalities connected with the so-
lutions of the modified Mathieu equation tend to
completely overrun the underlying physics [10].
After acknowledging the relevant approximations
that we made, we can now state the final form of the
SC-PBP equations that will be the starting point of
our subsequent discussion. First of all the longitu-
dinal part of the Green’s function can be written in
the standard ground-state dominance form [13]

Gy(z,2'; N)=y(z) y(z') exp(—ENN) , (11)
where w(z) is a solution of
2

TYE) 4 e +0(a) [1+402)°1) p(2) =0,
(12)

with

6 6F

0(a)= a}—(%csch(xa) and ey= (x—l)Nz

(13)

Furthermore since G,(z, z'; N) has to be an even
function of both its spatial arguments and has to
vanish at the impenetrable walls, y(z) has to satisfy
two additional boundary conditions, i.e.

%(z:O):O and yw(z=1a)=0. (14)
We have therefore reduced our basic equations to
an eigenvalue problem, eq. (12), where special care
has to be taken to obtain the lowest lying energy ei-
genvalue if e5>0 and, conversely, the highest lying
eigenvalue if ey<0, see ref. [6] for details.

4. Results

The basic equation that we have to solve, eq. (12)
of section 3, looks like a harmonic oscillator equa-
tion with a reversed potential, which, with the proper
choice of dimensionless variables, can be reduced to
a parabolic cylinder equation [15]. Introducing the
following two dimensionless variables

2 2 __ &t
£2=./260(a)(kz)* and a= J20(@ (15)

we can write the unnormalized solution of eq. (12)
that displays an even symmetry as
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w(z)~W(a, ) +W(a, =), (16)

where W (x, y) is the appropriate parabolic cylinder
function [15]. The second boundary condition, eq.
(14), now reads

w(a)=y(&) =0 with&3=./20(a)(ka)*, (17)

giving us a=a/(&), wherefrom through eq. (15) we
obtain ey=¢€y(a). In the case of ground-state dom-
inance, eq. (11), the saddle-point free energy is ob-
tained from eq. (3) as

F= —len 5=kTENN+FpB

(xl)?
6

=kT eéx(a)N+ Fpg, (18)
where Fpg is the standard linearized Poisson-Boltz-
mann free energy for constant surface charge density
[1]. In what follows we shall confine ourselves to the
analysis of the first term in eq. (18) that is the only
one specific for the confined polyelectrolyte problem.

Numerical investigation of the boundary condi-
tion, eq. (17), see fig. 2, now leads to the conclusion
that for £, <« 1 we have oo << — 1. In the opposite limit
&,>>1 we have a> 1. This allows us to use certain
asymptotic expressions valid for solution, eq. (16),
in different regimes of « values [15]. First of all for
a< —1 we end up with

w(&) ~/2W (e, 0)

X [cos(y/ —a&y+n/4)+sin(/ —aéy+n/4)],
(19)

0
-20 -15 -10 -5 0 5 10 4] 20

Fig. 2. Numerical solution of the boundary condition, eq. (17),
giving the a=a(&,) dependence in the range of &, values where
the asymptotic analysis of egs. (19) and (21) is not accurate.
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wherefrom the boundary condition, eq. (17), leads
to \/:—aéo= —mn/2. This can be converted into an
appropriate form for €y(a) leaving us with

2
e,ﬂa)z(%) (KL)Z—-H(a), when &y 1.
(20)

The first term in the above equation is apparently
nothing but the steric interaction between two sur-
faces with a polymeric chain in between, derived first
by Edwards and Dolan [16]. As the intersurface sep-
aration gets small enough the electrostatic effects are
completely lost and we remain with an essentially
“discharged” system where all the relevant interac-
tions are due to steric confinement.

In the opposite limit of a>> 1 we can find the fol-
lowing asymptotic representation of the solution, eq.
(16):

V/(éo)~\/§:a—'“2exp(§na)Ai(“;jf‘z’), (21)

where Ai(x) is the standard Airy function. The
boundary condition, eq. (17), in this case leads to
18 =a+ (—aip) (a)'/3, where ai, (negative) is the
first zero of the Airy function, corresponding to the
highest negative energy eigenvalue. The appropriate
conversion into the ey(a) dependence now yields

ev(a)= —0(a)[1+4(ka)?>]1~ —6(a) cosh(xa),
when &> 1. (22)

After obtaining solutions of the boundary condi-
tion in both limiting cases we can now investigate
the form of the polyelectrolyte distribution between
the two surfaces, fig. 3. In the limit &> 1 we clearly
observe that polymer segments are mostly distrib-
uted close to the boundary surfaces with negative
ex(a), leaving a small depleted region right at the
surfaces and a larger one close to the middle of the
intersurface space. This signifies that the polyelec-
trolyte chain is surface bound in this limiting case
[6]. This soft adsorption of the polyelectrolyte chain
is being promoted by the attractive electrostatic in-
teractions between the polyelectrolyte and the op-
positely charged surface-bound charges. The effect of
the polymer steric confinement is meagre in this case.

In the opposite extreme &, << 1 the electrostatic ef-
fects are only a first order perturbation to the purely
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Fig. 3. Behavior of the unnormalized solution, eq. (16) (square
root of the local polyelectrolyte segment density) for different
values of «. The bold lines correspond to a>0 and the semi-
dashed lines to «<0. « goes from +2 (top curve) to —2 (bot-
tom curve) in steps of one. Clearly for a> 0 there is a more or
less pronounced crowding of the polymeric chain close to the sur-
faces where (&) =0. In the opposite case the chain is mostly dis-
tributed around the middle of the intersurface space (£=0). These
two distinct cases of polyelectrolyte density profile correspond to
surface-bound and extended configurations.

steric interactions. The polymer segment density, fig.
3, behaves as if the charges would be absent and we
have a depleted region close to the surfaces with most
of the chain concentrated at the middle of the in-
tersurface space. The polyelectrolyte chain is not sur-
face bound in this case since the electrostatic attrac-
tion is not large enough to overcome the steric
confinement forces. In the limit of a—0 the steric
confinement forces would therefore always prevail
irrespective of the amount of charge on the surfaces.

5. Discussion

Let us review briefly all the approximations inter-
spersed along the way to an approximate analytical
solution of section 4. There is first of all the saddle-
point approximation, corresponding to the mean-
field (Poisson-Boltzmann) solution for the electro-
static potential. This approximation scheme will work
as long as the correlation effects are small (overall
small charges). We can nevertheless expect it to be
a first-order term in a hierarchy of approximations
taking into account the deviations from the most
probable thermodynamic configuration. The ground-
state dominance ansatz should not be viewed as a
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real approximation, since we want to deal with a
thermodynamic limit where all finite size effects are
of no importance. Furthermore the limit of xa << 1
was introduced with the sole purpose of not getting
entangled into a web of mathematical technicalities
connected with the solutions of the modified Mathieu
equation. The complete solution valid for any xa will
be found in an enlarged version of this short report
[10].

Finally we remain with the Wiegel approximation,
the only approximation that sets some serious limits
on our results. It states that the direct interactions of
the charges on the polymer beads with the surfaces
should be larger than the interaction between poly-
electrolyte charges themselves. Such a regime always
exists for a polyelectrolyte immersed in a salt solu-
tion for sufficiently small 7. However, if our model
system would be composed of a single polyelectro-
lyte chain, with no added salt, throwing away the first
term in eq. (10) would mean throwing away the
whole thing. For this particular system the Wiegel
approximation would never be valid and the solu-
tion of SC-PBP equations would have to be sought
along a different route [17].

Let us now review the behavior of e5(a), fig. 4, for
different values of &, which for constant 7 still de-
pends on the surface charge density and surface sep-
aration, eq. (17). Let us start by considering the limit
of 6—0. In this case the dominant contribution to
the chain free energy (the first term in eq. (18)) is
just the steric confinement term, eq. (20), and ey(a)
remains positive for all values of a. The conforma-
tion of the polyelectrolyte chain in this limit is al-
ways unbound with a majority of the beads concen-
trated near the middle of the intersurface space,
leaving behind depleted regions close to the bound-
ing surfaces.

At a finite but still small o, the ey(a) curve will
develop a local minimum at a finite value of a,
approaching the asymptotic form ey(a)= (n/2)?
(xa) ~? for small values of a. This follows simply by
inspecting the behavior of 8(a), eq. (13). Finally as
o becomes large we are in the regime described by
eq. (22) except for very small values of g, when the
steric confinement overwhelms any electrostatic
contribution to €. For almost all values of a the chain
free energy is therefore negative and the polyelectro-
lyte chain is in a surface-bound state, with a very
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Fig. 4. F(u) =€y as a function of dimensionless separation u = ka,
obtained from numerical solution of the boundary condition, eq.
(17), fig. 2, for different values of surface charge density ex-
pressed through a dimensionless constant h3 =6 fta/ee i (kl)>.
The uppermost curve corresponds to an uncharged polymer
(ho=0) with pure steric exclusion at the surfaces. The other curves
correspond to /=10, 30, 50, 75 (the lowest curve is for ip=75).
Beyond the local minimum the energy curves correspond to an
attractive contribution to the total force between the charged sur-
faces (dey(a)/da<0). For large enough Ay, moving from large
to small separations (u) there is a transition from surface bound
(ey<0) to extended conformation (ey>0) of the confined po-
lyelectrolyte chain.

small depletion layer right at the surfaces. Most of
the chain is concentrated close to the surfaces leav-
ing another depleted region around the middle of the
intersurface space. For large enough o as we go from
large to small intersurface separation the originally
surface-bound chain, can desorb on approach of the
surfaces. The details of this process can be ade-
quately described only after a careful investigation
of the limit a—co [10].

The most important characteristics of the free en-
ergy curve €y(a), fig. 4, are regions of attractive in-
teractions (dey(a)/da<0) that set in for suffi-
ciently large surface charge density in addition to the
standard (PB) repulsive forces (the second term in
eq. (18)). The same phenomenon has been ob-
served in the case of no added salt [4] where it was
shown to stem from the bridging of polyelectrolyte
chains from one surface to the other one. This re-
mains true for our system and is especially clear in
the case of surface bound states (ey(a) <0), where
the polyelectrolyte chain is mostly trapped in the vi-
cinity of the surfaces. Regions of the chain that are
not trapped and extend from one surface to the other
one acts as “‘elastic springs”, softly (electrostati-
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cally) bound with their ends to the surfaces, that tend
to draw the surface together. The bridging contri-
bution to the polyelectrolyte free energy is therefore
mostly elastic in origin.

Forces between charged surfaces are apparently
much more complicated if the intervening medium
contains a polyelectrolyte chain. The attractive in-
teraction that sets in for some particular values of
the system’s parameters is a consequence of bridging
of the polyelectrolyte chain between two partially
collapsed states close to the surfaces. The fact that
this attraction can be described already in the frame
of a mean-field theory sets the whole problem quite
apart from the standard PB theory, where attraction
comes in only in the regime where the mean-field de-
scription breaks down.
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